Stereoselective Synthesis of Conjugated Trienols from Allylic Alcohols and 1-lodo-1,3-dienes

LETTERS 2012 Vol. 14, No. 21 5594–5597

ORGANIC

Damien Brandt, Véronique Bellosta, and Janine Cossy*

Laboratoire de Chimie Organique, ESPCI ParisTech, CNRS, 10 rue Vauquelin, 75231 Paris Cedex 05, France

janine.cossy@espci.fr

Received October 2, 2012

The stereoselective synthesis of conjugated trienes has been achieved from allylic alcohols and 1-iodo-1,3-dienes using Pd(OAc)₂/AgOAc.

Conjugated trienes are present in a great variety of biologically active polyenic natural products such as macrolides with antitumor, antifungal, or antibiotic properties.¹ For example, trienic units are present in ansatrienine A^2 (antitumor), manumycin A^3 (antifungal, antibacterial, and antitumor agent against leukemia stem cells), and rapamycin⁴ (antibacterial and immunosuppressive agent). Furthermore, trienes are present in retinoids,⁵ in eicosanoids such as leukotriene B_4 ,⁶ an antitumor agent, and in π -conjugated materials⁷ (Figure 1).

Due to the importance of trienic units, new synthetic methods toward these building blocks are of importance. The existing approaches toward functionalized substituted

(4) Belshaw, P. J.; Meyer, S. D.; Johnson, D. D.; Romo, D.; Ikeda, Y.; Andrus, M.; Alberg, D. G.; Schultz, L. W.; Clardy, J.; Schreiber, S. L. *Synlett* **1994**, *1994*, 381–392.

(5) (a) Sporn, M. B.; Roberts, A. B.; Goodman, D. S. *The Retinoids*; Academic Press Inc.: 1984. (b) Sporn, M. B.; Roberts, A. B. *The Retinoids: Biology, Chemistry, and Medicine*; Raven Press: 1994. (c) Dawson, M. I.; Okamura, W. H. *Chemistry and Biology of Synthetic Retinoids*; CRC Press: 1990.

(6) Green, R. H.; Lambeth, P. F. *Tetrahedron* 1983, *39*, 1687–1721.
(7) Martin, R. E.; Diederich, F. *Angew. Chem., Int. Ed.* 1999, *38*, 1350–1377.

10.1021/ol302719e © 2012 American Chemical Society Published on Web 10/22/2012

Figure 1. Examples of biologically active natural products containing conjugated trienol moieties.

trienes, such as the Wittig⁸ and the Horner–Wadsworth– Emmons⁹ olefinations, are not step and/or atom economical processes, as the reagents have to be used in stoichiometric amounts. In addition, the conditions are not mild

⁽¹⁾ Thirsk, C.; Whiting, A. J. Chem. Soc., Perkin Trans. 1 2002, 999–1023.

^{(2) (}a) Damberg, M.; Russ, P.; Zeeck, A. *Tetrahedron Lett.* **1982**, *23*, 59–62. (b) Sugita, M.; Natori, Y.; Sueda, N.; Furihata, K.; Seto, H.; Otake, N. J. Antibiot. **1982**, *35*, 1474–1479.

^{(3) (}a) Sattler, I.; Thiericke, R.; Zeeck, A. *Nat. Prod. Rep.* **1998**, *15*, 221–240. (b) Alcaraz, L.; Macdonald, G.; Ragot, J.; Lewis, N. J.; Taylor, R. J. K. *Tetrahedron* **1999**, *55*, 3707–3716.

⁽⁸⁾ For a review, see: Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 863–927.

⁽⁹⁾ For reviews, see: (a) Wadsworth, W. S. Org. React. **1977**, 25, 73–253. (b) Kelly, S. E. In *Comprehensive Organic Synthesis*; Pergamon: Oxford, 1991; pp 729–817.

enough to be functional group tolerant. Pericyclic or biomimetic approaches to trienes can be used as well.^{10,11} In addition, syntheses of π -conjugated systems through C–C bond formation, catalyzed by a transition metal such as palladium,¹² gold,¹³ or nickel,¹⁴ have been realized (Scheme 1).

Herein, we would like to report a chemo-, regio-, and stereoselective method for the construction of conjugated trienols from 1-iodo-1,3-dienes 1 and nonprotected allylic alcohols 2 under Heck conditions¹⁵ (Scheme 2).

We initiated our investigation with (E,E)-1-iodo-1,3dienes 1 and (E,E)-1-bromo-1,3-diene 8 in the presence

(10) Vogel, P.; Turks, M.; Bouchez, L.; Marković, D.; Varela-Álvarez, A.; Sordo, J. Á. Acc. Chem. Res. 2007, 40, 931–942.

(11) (a) Leblanc, Y.; Fitzsimmons, B. J.; Zamboni, R.; Rokach, J. *J. Org. Chem.* **1988**, *53*, 265–267. (b) Hudlicky, T.; Frazier, J. O.; Seoane, G.; Tiedje, M.; Seoane, A.; Kwart, L. D.; Beal, C. J. Am. Chem. Soc. **1986**, *108*, 3755–3762. (c) BouzBouz, S.; Cossy, J. Org. Lett. **2004**, *6*, 3469–3472.

(12) For selected examples, see: Stille coupling: (a) Crombie, L.;
Horsham, M. A.; Jarrett, S. R. M. J. Chem. Soc., Perkin Trans. 1 1991,
1511–1524. (b) Nicolaou, K. C.; Piscopio, A. D.; Bertinato, P.;
Chakraborty, T. K.; Minowa, N.; Koide, K. Chem.—Eur. J. 1995, 1,
318–333. (c) Smith, A. B., III; Condon, S. M.; McCauley, J. A.; Leazer,
J. L.; Leahy, J. W.; Maleczka, R. E., Jr. J. Am. Chem. Soc. 1995, 117,
5407–5408. Sonogashira coupling: (d) Avignon-Tropis, M.; Berjeaud,
J. M.; Pougny, J. R.; Fréchard-Ortuno, I.; Guillerm, D.; Linstrumelle,
G. J. Org. Chem. 1992, 57, 651–654. Suzuki coupling: (e) Torrado, A.;
Iglesias, B.; López, S.; de Lera, A. R. Tetrahedron 1995, 51, 2435–2454.
(f) Molander, G. A.; Dehmel, F. J. Am. Chem. Soc. 2004, 126, 10313–10318. (g) Fuwa, H.; Sasaki, M. Org. Lett. 2010, 12, 584–587. Hiyama coupling: (h) Denmark, S. E.; Fujimori, S. J. Am. Chem. Soc. 2005, 127, 8971–8973.

⁽¹⁴⁾ Horie, H.; Kurahashi, T.; Matsubara, S. Chem. Commun. 2010, 46, 7229–7231.

(15) (a) Jeffery, T. J. Chem. Soc., Chem. Commun. 1991, 324–325. (b) Jeffery, T. Tetrahedron Lett. 1993, 34, 1133–1136.

of but-2-en-3-ol (**2a**). The synthesis of 1-halogeno-1,3-dienes was realized in three steps from acetylenic derivatives **4**. After hydrozirconation–iodation (Cp₂ZrCl₂, DIBAL-H, NIS, THF),¹⁶ the corresponding (*E*)-vinyl iodides **5** were obtained and coupled with vinylboronate **6** under Heck conditions [Pd(OAc)₂, P(*o*-Tol)₃, AgOAc, DMF, 50 °C] to produce 7.¹⁷ The obtained conjugated dienyl boronates 7 were then treated with NIS or NBS under basic conditions (NaOMe, THF) to furnish the desired (*E*,*E*)-1-iodo-1,3-dienes **1** and (*E*,*E*)-1-bromo-1,3-dienes **8** respectively in good to excellent yields (47–92%) (Scheme 3).¹⁸

At first, 1-iodo-1,3-diene **1a** was examined. When this diene was treated under Heck conditions $[Pd(OAc)_2 (10 \text{ mol }\%), AgOAc (1.1 equiv)]$ in DMF at 45 °C for 15 h in the presence of but-3-en-2-ol (**2a**) (3 equiv), the coupling product **3a** was obtained in 72% yield (Table 1, entry 1). The use of 2 equiv of alcohol **2a** gave a similar result (Table 1, entry 2). It is worth pointing out that it was also possible to reduce the quantity of palladium acetate to 5 mol % to produce **3a** with an identical yield (Table 1, entry 3). However, when the quantity of alcohol **2a** was reduced to 1.2 equiv, only traces of the coupling product **3a** were observed (Table 1, entry 4). The best conditions appeared to be the use of 2 equiv of the allylic alcohol, 5 mol % of Pd(OAc)₂, and 1.1 equiv of AgOAc (Table 1, entry 3).

Benzyl-, *p*-methoxybenzyl-, and *tert*-butyldiphenylsilyl ethers were tolerated as well as protected amines, as 1-iodo-1,3-dienes 1a-1d were transformed to conjugated (*E*,*E*,*E*)-trienols 3a-3d in good yields (54%-72%) (Table 2).

It is worth noting that the reaction of but-3-en-2-ol (2a) with 1-bromo-1,3-diene 8 under the previously developed conditions [2 equiv of 2a, 5 mol % of Pd(OAc)₂, and 1.1 equiv of AgOAc in DMF at 45 °C] did not lead to triene 3b and that 1-bromo-1,3-diene 8 was recovered (Scheme 4) indicating that the conditions used were chemoselective.

⁽¹⁶⁾ Huang, Z.; Negishi, E. Org. Lett. 2006, 8, 3675-3678.

^{(17) (}a) Stewart, S. K.; Whiting, A. *Tetrahedron Lett.* 1995, *36*, 3925–3928.
(b) Lightfoot, A. P.; Maw, G.; Thirsk, C.; Twiddle, S. J. R.; Whiting, A. *Tetrahedron Lett.* 2003, *44*, 7645–7648.

^{(18) (}a) Stewart, S. K.; Whiting, A. *Tetrahedron Lett.* **1995**, *36*, 3929–3932. (b) Knowles, J. P.; O'Connor, V. E.; Whiting, A. Org. Biomol. Chem. **2011**, *9*, 1876–1886.

Table 1. Optimization of Allylic Alcohol and Palladium Quantity^a

^a All experiments were performed with 1.1 equiv of AgOAc. ^b Isolated yield.

Table 2. Protecting Group Tolerance^a

×	1a-d + OH 2a	Pd(OAc)₂/AgOAc DMF 45 °C, 15 h	x 3a-d	OH
entry	1	Х	3	yield in 3 ^t
1	1a	BnO	3a	69%
2	1b	TBDPSO	3b	54%
3	1c	PMBO	3c	59%
4	1d	Boc(Ts)N	3d	58%

^{*a*} All reaction were performed with 2 equiv of **2a**, 5 mol % of Pd(OAc)₂, and 1.1 equiv of AgOAc. ^{*b*} Isolated yield.

A diversity of allylic alcohols of type 2 were involved in the coupling reaction with 1-iodo-1,3-dienes 1a and 1b. The results are reported in Table 3. Prop-2-en-1-ol (2b) (Table 3, entry 1) as well as secondary alcohols such as 2c-2d (Table 3, entries 2 and 3), 1-phenylprop-2-en-1-ol 2e (Table 3, entry 4), sterically hindered alcohols such as 2f-2h (Table 3, entries 5 to 7), and tertiary alcohol 2i (Table 3, entry 8) led to the corresponding trienols 3e-3l in good yields. When monoprotected diol 2j was involved in the coupling reaction with 1b, trienol 3m was formed in 46% yield (Table 3, entry 9). In addition, optically active trienols can be synthesized using optically active allylic alcohols. Thus, **3n** was formed in 65% yield with an enantiomeric excess superior to $92\%^{19}$ when (*S*)-**2d** (ee = 99%) was involved in the coupling reaction with **1a** (Table 3, entry 10).

With alcohol 2k, in which a disubstituted double bond is present, two trienols 3o and 3o' were formed, in a 55/45 ratio in favor of the conjugated triene 3o, with a moderate yield of 38% (Table 3, entry 11). It is worth noting that all the coupling products 3e-3o were obtained as pure (E,E,E)-trienols.

In addition, the coupling reaction between 1-iodo-1,3dienes and allylic alcohols is stereoselective. Thus, when 1-iodo-1,3-diene **12** [(Z,E)/(E,E) = 93/7], prepared in two steps from olefin **9** (Scheme 5), was reacted with allylic alcohols **2a** and **2g**, under the previous conditions, **13a** and **13b** were obtained in 66% and 51% yield respectively in an (E,Z,E)/(E,E,E) ratio of 90/10 (Scheme 5).

In considering the retention of configuration in trienol **3n**, we can suppose that the H_b β -hydrogen elimination is

Scheme 5. Coupling with (E,Z)-Trienols

Scheme 6. Proposed Mechanism

⁽¹⁹⁾ Enantiomeric excess was determined by 1 H NMR spectroscopy by addition of Eu(hfc)₃ to the NMR tube. No traces of the other enantiomer were observed.

Table 3. Comparison of Different Allylic Alcohols

not proceeding. Intermediate **A** is probably formed in which a coordination of palladium with the hydroxy group is occurring, preventing the β -hydrogen elimination of H_b, as a *syn*-relationship between Pd and H is required for palladium hydride elimination. In contrast, the palladium hydride elimination can occur with H_a (Scheme 6).

In conclusion, we have demonstrated that (E,E,E)-trienols and (E,Z,E)-trienols can be obtained from allylic

alcohols in good yields by using the $Pd(OAc)_2/AgOAc$ system.

Supporting Information Available. Experimental procedures and ¹H and ¹³C NMR data for all compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.